
Devops
Linux server administration, docker, AWS, nginx, apache, sql ...

Accessing file systems for linux machines on the local network
Cloudflare for local server
Certbox & NGINX on AWS
Debug Docker Errors
Certbox & NGINX on AWS
Install and Configure Memcached
PHP-FPM Optimization
Automatic AWS EC2 Backups
Generally Useful Docker Commands
Connect to Remote Servers with VSCode
Create your own “cloud” storage with Syncthing
Debug PHP with XDebug and VSCode (docker edition)
SSH Access with Nautilus
NameCheap SSL Certificates
Using Cloudfront For CDN
Connect to S3 from your local Ubuntu file system
Protecting wp-admin from bots
Skip Password Prompts for Sudo commands
Fix Localhost Binding for Safari
Create an SSH Key for Git
Install Mkcert for SSL on Localhost
Apache Tricks
NodeJS Proxy via Apache
SQL simplified
Localstack notes

Accessing file systems for linux machines on
the local network
Locate the other machines on your local network:

sudo arp-scan --localnet

result example:

Interface: wlp0s20f3, type: EN10MB, MAC: 04:33:c2:71:7e:42, IPv4: 192.168.0.106
Starting arp-scan 1.9.7 with 256 hosts (https://github.com/royhills/arp-scan)
192.168.0.1 cc:32:e5:54:10:13 TP-LINK TECHNOLOGIES CO.,LTD.
192.168.0.105 f0:f0:a4:15:28:59 (Unknown)
192.168.0.113 18:a6:f7:1d:98:59 TP-LINK TECHNOLOGIES CO.,LTD.
192.168.0.181 00:0e:08:eb:76:d5 Cisco-Linksys, LLC
192.168.0.157 c0:e7:bf:09:b8:bd (Unknown)
192.168.0.172 fc:b4:67:55:a5:24 (Unknown)
192.168.0.192 24:dc:c3:a1:80:f0 (Unknown)
192.168.0.175 ac:41:6a:26:cd:1f (Unknown)
192.168.0.173 e8:4c:4a:b4:cc:5c (Unknown)
192.168.0.184 4e:03:73:ea:b3:b8 (Unknown: locally administered)
192.168.0.186 5c:61:99:7a:64:5d (Unknown)
192.168.0.103 0c:9d:92:29:4a:a3 ASUSTek COMPUTER INC.
192.168.0.129 62:1e:f2:c4:cf:80 (Unknown: locally administered)

Hopefully these names will allow you to identify the machines. In my case the target machine was
using a TP-Link wireless card so knowing the router is always 192.168.0.1, I was able to deduce
that the target machine IP was 192.168.0.113

NOTE: in the example below I am using SSH so the host and target machine will both require SSH
to be installed. Use these commands to install:

Now I am able to access the machine via SSH by using the command ssh <username>@192.168.0.113 .
Once connected I am prompted to enter the password for user <username>

To explore the remote file system with Nautilus, I can open my local Nautilus window and under +
Other Locations add ssh://<username>@192.168.0.113. Once open it will prompt me for the
password for user <username>.

sudo apt-get install openssh-client
sudo apt-get install openssh-server

For a more permanent fix, you can add the host to your local ~/.ssh/config file as such:

Now you can go into nautilus and under + Other Locations enter ssh://bobsmachine

Host bobsmachine
HostName 192.168.0.113
User bobsyetuncle

https://docs.impressto.ca/uploads/images/gallery/2024-01/ssh-with-nautilus.png

When prompted to enter the username and password, selecting the "Remember forever" option
will allow you to login to the remote macine in the future without having the re-enter the password.

https://docs.impressto.ca/uploads/images/gallery/2024-01/ssh-shortcut.png

https://docs.impressto.ca/uploads/images/gallery/2024-01/save-forver.png

Cloudflare for local server

Use skiff for email. Copy DNS setting from skiff to cloudflare.

See: https://www.youtube.com/watch?v=hrwoKO7LMzk
https://raidowl.hostyboi.com/2022/08/22/Cloudflare-Tunnel/

install
wget -q https://github.com/cloudflare/cloudflared/releases/latest/download/cloudflared-linux-
amd64.deb && dpkg -i cloudflared-linux-amd64.deb

run a local host server

cd ~/www/nodeserver/
node hello.js

CLOUDFLARE

https://cyberhost.uk/cloudflare-argo-tunnel/#adding-more-services

https://developers.cloudflare.com/cloudflare-one/connections/connect-networks/get-started/create-
local-tunnel/

1.) login to cloudflare dashboard

2.) create a new domain name

3.) open terminal and login via cmd

 cloudflared tunnel login

select the domain name. a new pem file will be saved to local

3.) create the tunnel:

 cloudflared tunnel create mysite.com

if it exists delete it by checking with cloudflared tunnel list then cloudflared tunnel delete
impressto.ca

 a new credential json file will be saved to your local

4.) create the config file /home/webdev/.cloudflared/config.yml

url: http://localhost:5000
tunnel: 63f68dbe-585c-4c30-bdd9-980c39aa23e1
credentials-file: /home/annie/.cloudflared/63f68dbe-785c-4520-bdd9-980c39aa23e1.json

5.)
setup the dns:

cloudflared tunnel route dns mysite.com mysite.com

note you may need to delete the existing DNS CNAME record in the cloudflare website first

6.)
finally run it:

cloudflared tunnel run impressto.ca

change the local server address by editing ~/.cloudflared/config.yml

SERVING LOCAL SERVICES

sudo crontab -e

@reboot /home/annie/work/impressto/new_server/startup.sh

make sure to add local addresses to /etc/hosts otherwise they will not be available for the tunnel
on local

Certbox & NGINX on AWS
Did you know you can use CertBot and NGINX to have a wildcard certificate? Here’s how to do it
with an AWS Ubuntu sever.

Prerequisites:
AWS Route 53 DNS hosted zone
Web server using NGINX
Website already configured using SSL
SSH access with sudo (root) privileges
Knowledge and comfort navigating linux using the bash shell
Knowledge and comfort on how to view and edit files in linux (ie. vi, vim, nano…)

Overview:
The high level process to achieve our objective is as follows:

Installing CertBot
Installing DNS Plugin
Create IAM Policy
Create IAM Role
Associate IAM Role with EC2 Instance
Run CertBot and get new Certs
Update NGINX to use new SSL Certs
Test and restart NGINX
Validate SSL Cert
Test and review CertBot auto renewal

Disclaimer: As with any change, please make sure that you have created a Jira ticket, received
proper approval, notified business partners, scheduled the action and taken the necessary actions
to backup and recover should anything go wrong.

Installing CertBot:
SSH to the web server and run the following commands:

sudo apt-get update
sudo apt-get install software-properties-common
sudo add-apt-repository universe

Install DNS Plugin:
SSH to the web server and run the following command:

Create IAM Policy:

See also: https://certbot-dns-route53.readthedocs.io/en/stable/

Create new IAM policy using the AWS Route53 ZoneID of the hosted zone that you want to get an
SSL Cert for.

sudo add-apt-repository ppa:certbot/certbot
sudo apt-get update
sudo apt-get install certbot python-certbot-nginx

sudo apt-get install python3-certbot-dns-route53

{
 "Version": "2012-10-17",
 "Id": "certbot-dns-route53 sample policy",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "route53:ListHostedZones",
 "route53:GetChange"
],
 "Resource": [
 "*"
]
 },
 {
 "Effect" : "Allow",
 "Action" : [
 "route53:ChangeResourceRecordSets"
],
 "Resource" : [
 "arn:aws:route53:::hostedzone/YOURHOSTEDZONEID"

https://certbot-dns-route53.readthedocs.io/en/stable/

Create a new IAM Role:
Click [Create Role] > [AWS Service] > [EC2] > [Next: Permissions]
Search for and select your newly created Policy (one created from above)
Click [Next: Tags] > (Enter a TAG if you wish) > [Next: Review]
Give your new role a meaningful name and description
Click [Create Role]

Associate Role with EC2 Instance:
Click to select your EC2 Instance
Click [Actions] > Instance settings > [Attach / Replace IAM Role]
In the “IAM Role” dropdown list, click and select the IAM Role that you created (from
above)
Click [Apply] > [Close]

Run CertBot and get new Certs:
It’s important to get both the example.com and *.example.com as WILDCARD certs need to include
the naked domain as well as any sub domains.

Note: Be sure to review/update example.com, *.example.com before running the below command.

If the above command runs successfully, it will populate the necessary certificate key files into the
/etc/letsencrypt/live/example.com/ directory.

Update NGINX to use new SSL Certs:
The next step requires that you update the existing SSL configuration of the NGINX server to use
the new LetsEncrypt certs. There are a few common locations to check:

]
 }
]
}

sudo certbot certonly --dns-route53 -d example.com -d *.example.com --dns-route53-propagation-seconds 30 -m
domains@mysite.com --agree-tos

/etc/nginx/nginx.conf
/etc/nginx/sites-available/<site name>
/etc/nginx/snippets/
Update the following folders with new “fullchain.pem and privkey.pem”
beta_ssl.conf , fastcgi-php.conf , rc_ssl.conf , snakeoil.conf

Between these locations, you should be able to locate the SSL configuration/settings What your
looking are the following two keys:

ssl_certificate
ssl_certificate_key

Below is a description of the newly downloaded LetsEncrypt keys

`privkey.pem` : the private key for your certificate.
`fullchain.pem`: the certificate file used in most server software.
`chain.pem` : used for OCSP stapling in Nginx >=1.3.7.
`cert.pem` : will break many server configurations, and should not be used without
reading further documentation

You need to update the following SSL entries to point to the new LetsEncrypt keys

ssl_certificate /etc/letsencrypt/live/ example.com /fullchain.pem;
ssl_certificate_key /etc/letsencrypt/live/ example.com /privkey.pem;

Test and restart NGINX:
Test that there are no errors in any of your NGINX files by running the following command

If all of the tests come back as successful, you can go ahead and restart the nginx service

Validate SSL Cert:
Once restarted, open a browser window and visit your site. You want validate that the website is
using the new LetsEncrypt SSL cert and that the expiration is set 90 days out.

sudo nginx -t

sudo service nginx restart

Debug Docker Errors

Seriously have you tried just rebooting your machine?

For general container logs you can use the standard docker logs command:

SSLCertificateFile: file ‘/config_items/certs/impressto.pem’ does not exist or is empty

If the folder ~/Sites/impressto-docker/config/certs exists but is empty you will need to run this
terminal command:

Ngserve is not Running

If you are unable to load the webapp on ngserve.impressto.localhost, it is likely caused by a
missing dependency in the ~/Sites/impressto-webapp folder. Most likely it is a missing
environment.local.ts file.

You can test ngserve by logging into the docker container with “impressto” and running the
following:

Once you have fixed the issue you can run the “impressto” command again and wait a few minutes
for ng-serve to rebuild the files.

Cannot create container from docker-compose due to short volume name

You may have forgotten to edit the file ~/Sites/impressto-docker/.env.example. Make changes as
needed and save the file as .env. You can also run:

docker logs -f --until=120s laravel

cd ~/Sites/impressto-docker
./createSSLCert.sh

cd /var/www/impressto-webapp;
ng serve ---configuration local --base-href /app/ --ssl true

Containers fail to load or shut down randomly on your machine but not others

If you see this happening it is likely RAM related. Either you are running out of memory of you have
bad RAM.

First try importing a docker container. If the imported container works you likely do not have
hardware issues. If you are still having crashed containers after importing a container image, you
need t start testing your system hardware. A common symptom of bad RAM is random computer
crashes and intermittent freezing interfaces. If you need to reboot your machine several times a
day, your hardware is probably baked.

Try memtester in Ubuntu 20

Another option is GTK Stress Tester but that will not find memory faults.

Composer running out of memory

Composer defaults to a maximum of 1.5G of memory usage. Sometimes this is not enough for a
composer update. If you notice that builds are not completing correctly for this reason, a work-
around is the following command:

Error: Cannot find module ‘nan’

This is more of an angular issue on mac but you may run into it while setting up your local
webapp. Fix is to go into the ~/Sites/impressto-webpp folder and enter this command:

Can’t connect to docker daemon. Is ‘docker -d’ running.

This error may also appear as:

This error is most commonly seen if you have not added your user to the docker group. Rum the
following commands:

cd ~/Sites/impressto-docker;
./prepareDockerConfigs.sh;

sudo apt-get install memtester
sudo memtester 1024 5

COMPOSER_MEMORY_LIMIT=-1 composer update

npm i -g nan

ERROR: Couldn't connect to Docker daemon at http+docker://localhost - is it running?

https://codebox.impressto.net/books/working-with-docker/page/importing-and-exporting-containers
https://flathub.org/apps/details/com.leinardi.gst

After that simply reboot your machine and the problem should go away.

create .: volume name is too short, names should be at least two alphanumeric
characters

Did you remember to rename the docker root folderfile .env.example to env ?

Also this can happen if the formatting in the docker-compose.yml is not correct (bad indenting).

Cannot use port 80

If you have ngonx, apache or skype installed on the host system that will block the use of port 80.
To determine what is running on port 80 use this command:

This should display something like this

identify the PID of the process using port 80 and kill it using a command like this

You can also permanently turn off apache on the host with:

sudo groupadd docker;

sudo usermod -aG docker $USER;

sudo lsof -i tcp:80

sudo lsof -i tcp:80

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
nginx 1858 root 6u IPv4 5043 0t0 TCP ruir.mxxx.com:http (LISTEN)
nginx 1867 www-data 6u IPv4 5043 0t0 TCP ruir.mxxx.com:http (LISTEN)
nginx 1868 www-data 6u IPv4 5043 0t0 TCP ruir.mxxx.com:http (LISTEN)
nginx 1869 www-data 6u IPv4 5043 0t0 TCP ruir.mxxx.com:http (LISTEN)
nginx 1871 www-data 6u IPv4 5043 0t0 TCP ruir.mxxx.com:http (LISTEN)

sudo lsof -t -i tcp:80 -s tcp:listen | sudo xargs kill

sudo service apache2 stop;
sudo service mysql stop;

also apache and mysqlfrom starting as a service on bootup
sudo systemctl disable apache2 mysql;

in some cases it is easiest to just completely remove apache2 from the host system

NodeJS – FATAL ERROR: Ineffective mark-compacts near heap limit Allocation failed – JavaScript
heap out of memory

This is not actually a docker error but may occur if you are runniing webpack builds inside docker
(not recommended). If you are getting this error on our host system try the following command
which is what we have used on the feature and builder servers:

Performance issue with Mac:

Follow the official instructions for installing Docker on Mac. In a nutshell you will need to download
Docker for Mac, and install it as you would any other Mac app. IMPORTANT: make sure you
have the latest version of docker for Mac. Once installed you will need to allocate enough
memory for docker to run the containers. Recommended size is 8GB. Not setting the memory limit
may cause the elastic search container to exit with a 137 error code (docker container out of
memory). Linux does not require this config as it allocates memory directly from the host system.

sudo apt-get --purge remove apache2;
sudo apt-get remove apache2-common;

 #increase node memory to 2gb
export NODE_OPTIONS=--max-old-space-size=2048

https://docs.docker.com/docker-for-mac/install/
https://hub.docker.com/editions/community/docker-ce-desktop-mac/
https://hub.docker.com/editions/community/docker-ce-desktop-mac/

Certbox & NGINX on AWS
Did you know you can use CertBot and NGINX to have a wildcard certificate? Here’s how to do it
with an AWS Ubuntu sever.

Prerequisites:
AWS Route 53 DNS hosted zone
Web server using NGINX
Website already configured using SSL
SSH access with sudo (root) privileges
Knowledge and comfort navigating linux using the bash shell
Knowledge and comfort on how to view and edit files in linux (ie. vi, vim, nano…)

Overview:
The high level process to achieve our objective is as follows:

Installing CertBot
Installing DNS Plugin
Create IAM Policy
Create IAM Role
Associate IAM Role with EC2 Instance
Run CertBot and get new Certs
Update NGINX to use new SSL Certs
Test and restart NGINX
Validate SSL Cert
Test and review CertBot auto renewal

Disclaimer: As with any change, please make sure that you have created a Jira ticket, received
proper approval, notified business partners, scheduled the action and taken the necessary actions
to backup and recover should anything go wrong.

Installing CertBot:
SSH to the web server and run the following commands:

sudo apt-get update
sudo apt-get install software-properties-common
sudo add-apt-repository universe

Install DNS Plugin:
SSH to the web server and run the following command:

Create IAM Policy:

See also: https://certbot-dns-route53.readthedocs.io/en/stable/

Create new IAM policy using the AWS Route53 ZoneID of the hosted zone that you want to get an
SSL Cert for.

sudo add-apt-repository ppa:certbot/certbot
sudo apt-get update
sudo apt-get install certbot python-certbot-nginx

sudo apt-get install python3-certbot-dns-route53

{
 "Version": "2012-10-17",
 "Id": "certbot-dns-route53 sample policy",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "route53:ListHostedZones",
 "route53:GetChange"
],
 "Resource": [
 "*"
]
 },
 {
 "Effect" : "Allow",
 "Action" : [
 "route53:ChangeResourceRecordSets"
],
 "Resource" : [
 "arn:aws:route53:::hostedzone/YOURHOSTEDZONEID"

https://certbot-dns-route53.readthedocs.io/en/stable/

Create a new IAM Role:
Click [Create Role] > [AWS Service] > [EC2] > [Next: Permissions]
Search for and select your newly created Policy (one created from above)
Click [Next: Tags] > (Enter a TAG if you wish) > [Next: Review]
Give your new role a meaningful name and description
Click [Create Role]

Associate Role with EC2 Instance:
Click to select your EC2 Instance
Click [Actions] > Instance settings > [Attach / Replace IAM Role]
In the “IAM Role” dropdown list, click and select the IAM Role that you created (from
above)
Click [Apply] > [Close]

Run CertBot and get new Certs:
It’s important to get both the example.com and *.example.com as WILDCARD certs need to include
the naked domain as well as any sub domains.

Note: Be sure to review/update example.com, *.example.com before running the below command.

If the above command runs successfully, it will populate the necessary certificate key files into the
/etc/letsencrypt/live/example.com/ directory.

Update NGINX to use new SSL Certs:
The next step requires that you update the existing SSL configuration of the NGINX server to use
the new LetsEncrypt certs. There are a few common locations to check:

]
 }
]
}

sudo certbot certonly --dns-route53 -d example.com -d *.example.com --dns-route53-propagation-seconds 30 -m
domains@mysite.com --agree-tos

/etc/nginx/nginx.conf
/etc/nginx/sites-available/<site name>
/etc/nginx/snippets/
Update the following folders with new “fullchain.pem and privkey.pem”
beta_ssl.conf , fastcgi-php.conf , rc_ssl.conf , snakeoil.conf

Between these locations, you should be able to locate the SSL configuration/settings What your
looking are the following two keys:

ssl_certificate
ssl_certificate_key

Below is a description of the newly downloaded LetsEncrypt keys

`privkey.pem` : the private key for your certificate.
`fullchain.pem`: the certificate file used in most server software.
`chain.pem` : used for OCSP stapling in Nginx >=1.3.7.
`cert.pem` : will break many server configurations, and should not be used without
reading further documentation

You need to update the following SSL entries to point to the new LetsEncrypt keys

ssl_certificate /etc/letsencrypt/live/ example.com /fullchain.pem;
ssl_certificate_key /etc/letsencrypt/live/ example.com /privkey.pem;

Test and restart NGINX:
Test that there are no errors in any of your NGINX files by running the following command

If all of the tests come back as successful, you can go ahead and restart the nginx service

Validate SSL Cert:
Once restarted, open a browser window and visit your site. You want validate that the website is
using the new LetsEncrypt SSL cert and that the expiration is set 90 days out. Individual browser
instructions can be found in the link provided below, however what you’re looking for is something
like this:

sudo nginx -t

sudo service nginx restart

Image not found or type unknown

SSL Cert InfoImage not found or type unknown

Instructions on how to view SSL certificate details in each browser can be found at
https://www.globalsign.com/en/blog/how-to-view-ssl-certificate-details/

Test and review CertBot auto renewal:
The last thing to do before finishing up is making sure that both the automatic renewal process will
work and that it’s scheduled.

To test the auto renewal process run the following on the web server:

If successful you can check to see if a scheduled task is set to automatically run the renew
process. By default, Certbot tries to renew the cert once every 12 hours. The command to renew
certbot will be installed in one of the following locations:

/etc/crontab/

sudo certbot renew --dry-run

https://www.globalsign.com/en/blog/how-to-view-ssl-certificate-details/

/etc/cron.*/* – (ie. /etc/cron.d/certbot)
systemctl list-timers

To check the status of the certbot including the auto renew cron job run the following command:

More information:

https://certbot.eff.org/lets-encrypt/ubuntuxenial-nginx
https://certbot-dns-route53.readthedocs.io/en/stable/

sudo tail -50 /var/log/letsencrypt/letsencrypt.log

https://certbot.eff.org/lets-encrypt/ubuntuxenial-nginx
https://certbot-dns-route53.readthedocs.io/en/stable/

Install and Configure Memcached
Memcached is a lightweight alternative to Redis for storing short lived cache which would
otherwise we written to the local storage folder as files.

Installing Memcached on Linux is fast and easy. Follow these steps (5 minute job):

1.) As a user with root privileges, enter the following command:

2.) Once the installation is completed, the Memcached service will start automatically. To check the
status of the service, enter the following command:

3.) Change the memcached configuration setting for CACHESIZE and -l:

Open /etc/memcached.conf in a text editor.

Locate the -m parameter and change its value to at least 2048 (2GB)

Locate the -l parameter and confirm its value is set to 127.0.0.1 or localhost

4.) Save your changes to memcached.conf and exit the text editor then restart memcached.

5.) Note that on some systems memcached may not automatically start on bootup. In that case use
this command to fix:

sudo apt-get update;
sudo apt-get install memcached libmemcached-tools php-memcached;

sudo systemctl status memcached

memory
-m 2048

#restart memcached
sudo systemctl restart memcached

#confirm it is running
echo "stats settings" | nc localhost 11211

check number of cached items
echo "stats items" | nc localhost 11211

6.) Add the php memchached extension

Configure Laravel to Use Memcached
Laravel is wired to use memcached out-of-the-box. To enable memcached you simply have to add
this line to the .env file:

If you need to edit the ports used by memcaches, you can find those setting in config/cache.php.

sudo systemctl enable memcached

 sudo apt-get install php7.3-memcached;

CACHE_DRIVER=memcached

PHP-FPM Optimization
Out-of-box php fpm is configured for very low server specs such as a 2 core machine. It needs to be
configured to match the hardware you are on. You need to factor on the most expensive processes
you run.

Typically a low-end production server has 4 cores with 8 GB RAM so you can use the following
configuration:

Edit the file /etc/apache2/mods-enabled/mpm-event.conf and add the following:

event MPM
StartServers: initial number of server processes to start
MinSpareThreads: minimum number of worker threads which are kept spare
MaxSpareThreads: maximum number of worker threads which are kept spare
ThreadsPerChild: constant number of worker threads in each server process
MaxRequestWorkers: maximum number of worker threads
MaxConnectionsPerChild: maximum number of requests a server process serves
<IfModule mpm_event_module>
# 	StartServers			 2
# 	MinSpareThreads		 25
# 	MaxSpareThreads		 75
# 	ThreadLimit			 64
# 	ThreadsPerChild		 25
# 	MaxRequestWorkers	 150
# 	MaxConnectionsPerChild 0
</IfModule>

ServerLimit (Total RAM - Memory used for Linux, DB, etc.) / process size
StartServers (Number of Cores)
MaxRequestWorkers (Total RAM - Memory used for Linux, DB, etc.) / process size

<IfModule mpm_event_module>
 # for c5 classes with only 8GB ram
 # ServerLimit 500
 StartServers 4
 MinSpareThreads 25
 MaxSpareThreads 75
 ThreadLimit 64

Edit the file /etc/php/7.4/fpm/pool.d/www.conf and make sure the following setting are there:

Now we have allowed php to run a lot more threads we may run into a “too many open files” error.

To fix edit /etc/php/7.4/fpm/php-fpm.conf and change the rlimit_files to 4096. If you are still getting
the “too many open files” error you can double this.

 ThreadsPerChild 25
 MaxRequestWorkers 2800
 # for c5 classes with only 8GB ram
 # MaxRequestWorkers 1400
 MaxConnectionsPerChild 1000
</IfModule>

; settings explanation - don't need to copy this
;pm.max_children (total RAM - (DB etc) / process size)
;pm.start_servers (cpu cores * 4)
;pm.min_spare_servers (cpu cores * 2)
;pm.max_spare_servers (cpu cores * 4)

; default is dynamic but that can churn up the memory because it leave processes lingering
; pm = dynamic
pm = ondemand
; default is pm.max_children = 5
pm.max_children = 256

; everything below is only relevant if using pm = dynamic
; for c class servers with only 8GB ram
; pm.max_children = 128
; default is pm.start_servers = 2
pm.start_servers = 16
; default is pm.min_spare_servers = 1
pm.min_spare_servers = 8
; default is pm.max_spare_servers = 3
pm.max_spare_servers = 16
; setting to 0 or leaving commented out will use the PHP_FCGI_MAX_REQUESTS value whatever that is.
pm.max_requests = 1000

rlimit_files = 10000

You can also try editing /etc/security/limits.conf and adding the following:

Restart everything:

See also https://medium.com/@sbuckpesch/apache2-and-php-fpm-performance-optimization-step-
by-step-guide-1bfecf161534

* hard nofile 10000
* soft nofile 10000
www-data soft nofile 10000
www-data hard nofile 10000

sudo service apache2 restart && sudo service php7.4-fpm restart

https://medium.com/@sbuckpesch/apache2-and-php-fpm-performance-optimization-step-by-step-guide-1bfecf161534
https://medium.com/@sbuckpesch/apache2-and-php-fpm-performance-optimization-step-by-step-guide-1bfecf161534

Automatic AWS EC2 Backups
If you have a lot of developers working on the same server, there is nothing worse than having to
fix something that went horribly wrong with it. That is why I wrote a script (see at bottom of this
page) to help other developers to back up their AWS EC2 instances daily and set the number of
versions to keep. If a developer screws up the server, that is ok. You can just restore a copy from
last night.

First thing you will need to do is create an AWS IAM user to allow you to specify a backup policy.
This user will be restricted to very limited abilities. Once the user has been created apply a policy
that just allows backups. I suggest AWSBackupFullAccess . Please avoid using full access policies.
They can allow someone to do crazy dangerous things (like spinning up multizone servers $$$
outch).

Once you have created a user with the required backup policy, create an Access Key. You will use
the generated Access Key and Secret in the script below.

Now you can SSH into your EC2 instance (Ubuntu in my case) and install the AWS cli tool.

Fill in the appropriate values for the configuration prompts. Remember to use the Key and Secret
you just created. You can see an example of what values the config tool expects in the script code
below. Make sure you know the region as the backup will only work if the region matched the EC2
instances you are backing up.

Next you need to get the id of the EC2 insance or instances you want to backup. In the examples
script below it is only backing up one server but you can do many. Example below.

Once that is done you are ready to add the script to your server. It will run off a cron. Make sure
you put the file someplace this is not accessible to the public obviously (e.g. not in a public website
folder).

sudo apt-get -y install awscli; aws configure;

instances+=("autobackup_developmemt|i-0ed78a1f3583e1543")
instances+=("autobackup_staging|i-0ed72a1f3583e343")

https://console.aws.amazon.com/iamv2/home#/users
https://console.aws.amazon.com/iam/home#/policies/arn%3Aaws%3Aiam%3A%3Aaws%3Apolicy%2FAWSBackupFullAccess
https://console.aws.amazon.com/iam/home#/users/s3user?section=security_credentials

Make the script executable using the chmod +x command. Then give it a test.

Once you know it runs as you can see the AMI (EC2 backup image) created or being created, you
can add a cron to automate the backups. Use this command to create or edit the crontab. Note
that for ubuntu the typical user is “ubuntu” but for AWS Linux it will be “ec2-user”.

Add the following line (adjust the path to your script)

Now are are done. You can sleep at night knowing that no matter how much someone screws up
the server, they won’t screw up your day.

Here the full script:

sudo crontab -e -u ubuntu

backup EC2 instances nightly 4:30 am GMT
30 4 * * * . $HOME/.profile; /var/devops/ec2_backup.sh

#!/bin/bash

prior to using this script you will need to install the aws cli on the local machine

https://docs.aws.amazon.com/AmazonS3/latest/dev/setup-aws-cli.html

AWS CLI - will need to configure this
sudo apt-get -y install awscli
example of current config - july 10, 2020
#aws configure
#aws configure set key ARIAW5YUMJT7PO2N7L *fake - user your own*
#aws configure secret X2If+xa/rFITQVMrgdQVpFLx1c7fwP604QkH/x *fake - user your own*
#aws configure set region us-east-2
#aws configure set format json

backup EC2 instances nightly 4:30 am GMT
30 4 * * * . $HOME/.profile; /var/www/devopstools/shell-scripts/file_backup_scripts/ec2_backup.sh

script_dir="$(dirname "$0")"

If you want live notifications about backups, use this example with a correct slack key
#SLACK_API_URL="https://hooks.slack.com/services/T6VQ93KM/BT8REK5/hFYEDUCoO1Bw72wxxFSj7oY"

prevday1=$(date --date="2 days ago" +%Y-%m-%d)
prevday2=$(date --date="3 days ago" +%Y-%m-%d)
today=$(date +"%Y-%m-%d")

instances=()
add as many instances to backup as needed
instances+=("autobackup_impressto|i-0ed78a1f3583e1543")

for ((i = 0; i < ${#instances[@]}; i++)); do

 instance=${instances[$i]}

 instanceName="$(cut -d'|' -f1 <<<"$instance")"
 instanceId="$(cut -d'|' -f2 <<<"$instance")"

 prevImageName1="${instanceName}_${prevday1}_$instanceId"
 prevImageName2="${instanceName}_${prevday2}_$instanceId"
 newImageName="${instanceName}_${today}_$instanceId"

 consoleout --green "Begin backing $instanceName [$instanceId]"

 aws ec2 create-image \
 --instance-id $instanceId \
 --name "$newImageName" \
 --description "$instanceName" \
 --no-reboot

 if [$? -eq 0]; then
 echo "$newImageName created."
 echo ""
 if [! -z "${SLACK_API_URL}"]; then
 curl -X POST -H 'Content-type: application/json' --data '{"text":":rotating_light: Backing up
'$newImageName' to AMI. :rotating_light:"}' ${SLACK_API_URL} fi
 echo -e "\e[92mBacking up ${newImageName} to AMI."

 else
 echo "$newImageName not created."
 echo ""
 fi

 imageId=$(aws ec2 describe-images --filters "Name=name,Values=${prevImageName1}" --query
'Images[*].[ImageId]' --output text)

 if [! -z "${imageId}"]; then

 echo "Deregistering ${prevImageName1} [${imageId}]"
 echo ""
 echo "aws ec2 deregister-image --image-id ${imageId}"
 aws ec2 deregister-image --image-id ${imageId}
 fi

 imageId=$(aws ec2 describe-images --filters "Name=name,Values=${prevImageName2}" --query
'Images[*].[ImageId]' --output text)

 if [! -z "${imageId}"]; then

 echo "Deregistering ${prevImageName2} [${imageId}]"
 echo ""
 echo "aws ec2 deregister-image --image-id ${imageId}"
 aws ec2 deregister-image --image-id ${imagesId}
 fi

 consoleout --green "Completed backing $instanceName"

done

Generally Useful Docker Commands
Remove all Docker Containers
Stop the container(s):

Delete all containers :

Delete all volumes:

Delete all networks:

Kill a specific container :

Saving and Restoring Docker Containers
In cases where you cannot for whatever reason build docker containers on your local system, do
not fear. Docker allows you to save and import backed up images of containers.

Saving Containers

It is a good habit to routinely save containers. Just open a terminal and use the docker save
command. Example here:

cd ~/mydocker-repo-folder;
docker-compose down;

docker rm -f $(docker ps -a -q)

docker volume rm $(docker volume ls -q)

docker network rm $(docker network ls -q)

docker container kill [CONTAINER_NAME]

docker save -o ~/Desktop/my_docker_image.tar laravel

Once that is saved you can share it with other developers or keep it as a personal backup. You can
also share it with another developer directly using JustBeamIt.

Restoring from a Container Image

If one of your containers is acting wonky, you can get the name and image id with the following
command:

You can see the image name and id in the list.

DeepinScreenshot_select-area_20200902153536.pngImage not found or type unknown

If the container is running, you can shut it all down with “docker-compose down”. Then you can
delete the offending container with the docker rm command. Here is an example:

Now you can load a new container to replace the broken one. To do this you will need to get an
image from another developer or use one you previously saved.

To load the container from the image use the docker load command. Example here:

Running multiple services in one container
In my case I want to serve some pages with php and others with nodejs within the same container.
This saves a lot of build time and memory. So here is what I add to my Dockerfile

Then in the file run.sh I start php, nginx and run a nodejs app all in different threads using a single
ampersand to run each command in a differrent thread. This lets me run as many processes as
needed concurrently.

docker images

kill docker compose
cd ~/my-docker-folder;
docker-compose down;

docker image rm 3f8c96702c14

docker load -i ~/Desktop/my_docker_image.tar

CMD /config_items/run.sh

service php8.0-fpm start & nginx -g 'daemon off;' & cd /var/www/pslamp-blog && npm run start

https://justbeamit.com/
https://bashitout.com/2013/05/18/Ampersands-on-the-command-line.html
https://bashitout.com/2013/05/18/Ampersands-on-the-command-line.html

In cases where you cannot for whatever reason build docker containers on your local system, do
not fear. Docker allows you to save and import backed up images of containers.

Saving Containers

It is a good habit to routinely save containers. Just open a terminal and use the docker save
command. Example here:

Once that is saved you can share it with other developers or keep it as a personal backup.

Restoring from a Container Image

If one of your containers is acting wonky, you can get the name and image id with the following
command:

docker image rm IDOFBADCONTAINER

Now you can load a new container to replace the broken one. To do this you will need to get an
image from another developer or use one you previously saved.

To load the container from the image use the docker load command. Example here:

docker save -o ~/Desktop/my_docker_image.tar laravel

docker images

docker load -i ~/Desktop/my_docker_image.tar

Connect to Remote Servers with VSCode
By far one of the coolest VSCode extensios I’ve used in a whole. This saves me so much time when
debugging dev /build machines. I also use Nautilus on Linux to browser remote servers but being
able to edit code like it is local saved a heck of a lot of time.

Add the remote SSH VSCode extension:
https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-ssh

No add an ssh entry on your local ~/.ssh/config file.

Example entry:

Open a terminal and test to make sure you can SSH in. You can just use for the example config
above:

In VSCode use Ctrl+Shift+P then enter ssh. Select the first option Remote-SSH:Connect to Host.

ext install ms-vscode-remote.remote-ssh

Host impressto
HostName 154.343.23.44
User ubuntu
IdentityFile ~/work/keys/mysite.pem

ssh impressto

https://docs.impressto.ca/ssh-access-with-nautilus/index.html
https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-ssh

Create your own “cloud” storage with
Syncthing
I have been using Syncing for years now and had assumed eveyone had at least heard of it.
Apparently not. When I do mention it people seem to think is is an impossible thing. It isn’t and it is
really easy to setup.

What the heck is Syncthing?
It is an open source (fully) privatem decentralized file system that uses torrent technology to share
files between multipe machines/devices. There is no “middleman” to cut the connection so running
Syncthing between your own devices really is your own private cloud. It comes with a great GUI
and is very easy to use.

Why Syncthing?
Traditional cloud storage is cleap enough that the cost is not prohibitive for most people, at
present. In my case most of my backups are for files I won’t look at for years – maybe even
decades. A LOT can change in a decade when it comes to online services. Anyone who ever used
Panoramio can tell you about the milions of user-uploaded pictures Google simply decided to
delete. Point is backups for personal docs, pictures, etc are YOURS and nobody else should be able
to decide on how or if they will be stored.

Syncthing allow you to use multiple devices to provide redundancy. If a hard drive on one device
fails, you still have copies on other devices. It is also a lot faster than using a cloud service because
typically you are only transferring files locally on the same network, although you can share files
with any device anywhere in the work if you want to.

Setting up Syncthing on Ubuntu

sudo apt install curl apt-transport-https;

curl -s https://syncthing.net/release-key.txt | sudo apt-key add -;

echo "deb https://apt.syncthing.net/ syncthing release" | sudo tee /etc/apt/sources.list.d/syncthing.list;

Once you have completed the commands above you can open the syncthing GUI in your browser
with http://127.0.0.1:8384

https://www.youtube.com/embed/V4kWJ8JcdtM?feature=oembed

sudo apt-get update;

sudo apt-get install syncthing;

replace username with your own system username
sudo systemctl enable syncthing@username.service;

replace username with your own system username
sudo systemctl start syncthing@username.service;

https://www.youtube.com/embed/V4kWJ8JcdtM?feature=oembed

Debug PHP with XDebug and VSCode (docker
edition)
If you are using Docker you will want to add this to your Dockerfile (runs when container being
created).

Xdebug configuration
You can tweak the Xdebug configuration on file docker-compose.yml :

The laravel container definition has an environment variable for this purpose

Adjust it, in particular the idekey should match the key set in your IDE.

VSCode setup
On VS Code we can use the PHP Debug plugin, once installed we can go to the Debug panel
(Ctrl+Shift+D).

Select Add configuration in the the dropdown at the top-right of the panel.

In VSCode open the menu Run/Add Configuration, it opens launch.json. launch.json

RUN pecl install -f xdebug-2.9.8 \
&& rm -rf /tmp/pear \
&& echo "zend_extension=$(find /usr/local/lib/php/extensions/ -name xdebug.so)" >
/usr/local/etc/php/conf.d/xdebug.ini;

- XDEBUG_CONFIG=remote_host=mysite.docker.laravel remote_port=9000 remote_enable=1
remote_autostart=1 default_enable=1 idekey=VSCODE remote_connect_back=1

https://marketplace.visualstudio.com/items?itemName=felixfbecker.php-debug

SSH Access with Nautilus
If using Linux with Nautilus you can connect directly to the server.

1.) create a config file in .ssh directory.

Paste the following and save. You may need to edit the path to your pem files.

Now you can connect using terminal with this example:

on command line will connect to your remote amazon ec2 server without anyother info.

Open Nautilus. press Ctrl+L

there you can type ssh://myserver

press enter.

Note you can also just trasnfer files directly with this example:

sudo gedit ~/.ssh/config

Host myserver
HostName 18.216.138.59
User ubuntu
IdentityFile ~/keys/myserver.pem

ssh myserver

scp -i ~/keys/myserver.pem file.txt ubuntu@18.216.138.59:/var/www/mysqldump/.

NameCheap SSL Certificates
Namecheap is as the name suggests; a cheap place to get stuff. Their SSL certificates cost 1/5 of
what they cost at Godaddy and are pretty much just as good. There are some odd bugs with the
namecheap site. Below are the steps you need to successfully create and deploy an SSL certificate
from NameCheap.

1.) Creare a csr file

2.) Go to https://ap.www.namecheap.com/

3.) Upload csr file to namecheap site. This will let you get a validation file.

4.) add the validation file to the root website folder: /.well-known/pki-validation/

This automatcially validates with: http://mysite.com/.well-known/pki-
validation/AEF34B001667BF75FD31F090F99754C0.txt

If it fails to validate contact support and they can force it.

https://www.namecheap.com/support/knowledgebase/article.aspx/9464/69/can-i-download-an-
issued-certificate-on-your-site

https://www.namecheap.com/support/knowledgebase/article.aspx/9593/33/installing-an-ssl-
certificate-on-amazon-web-services-aws/

https://www.namecheap.com/support/knowledgebase/article.aspx/10314/33/ssl-certificate-
installation-on-apache2-debian-ubuntu/

5.) At this point you should be ready to add the generated SSL certificate the the server. Download
the package.

6.) Add the dowloaded files to your /etc/apache/ssl folder.

7.) Add the config file to your vhost file. It should look something like this:

openssl req -new -newkey rsa:2048 -nodes -keyout mysite.key -out mysite.csr

<VirtualHost *:80>
 ServerName stuff.mysite.com
 DocumentRoot /var/www/stuff/public
</VirtualHost>

https://www.namecheap.com/support/knowledgebase/article.aspx/9464/69/can-i-download-an-issued-certificate-on-your-site
https://www.namecheap.com/support/knowledgebase/article.aspx/9464/69/can-i-download-an-issued-certificate-on-your-site
https://www.namecheap.com/support/knowledgebase/article.aspx/9593/33/installing-an-ssl-certificate-on-amazon-web-services-aws/
https://www.namecheap.com/support/knowledgebase/article.aspx/9593/33/installing-an-ssl-certificate-on-amazon-web-services-aws/
https://www.namecheap.com/support/knowledgebase/article.aspx/10314/33/ssl-certificate-installation-on-apache2-debian-ubuntu/
https://www.namecheap.com/support/knowledgebase/article.aspx/10314/33/ssl-certificate-installation-on-apache2-debian-ubuntu/

8.) Restart the server with sudo service apache2 restart and you should be good.

<VirtualHost *:443>
 ServerName stuff.mysite.com
 DocumentRoot var/www/stuff/public
	<Directory var/www/stuff/public>
 Options FollowSymLinks
 AllowOverride All
 DirectoryIndex index.php
 </Directory>

	Include /etc/apache2/ssl/mysite_2021/namecheap-ssl-apache.conf

</VirtualHost>

Using Cloudfront For CDN
Basic Setup
To setup a CDN using Cloudfront you first need to create an S3 bucket and make it public. In this
example we will use pslampdemo.s3.amazonaws.com

Note that when setting up a cloudfront distribution you will need to assign an SSL certificate. See:
https://impressto.net/aws-setup-ssl-certificates

Once your public S3 bucket has been created to to the Cloudfront console and create a new
distribution. Go to https://console.aws.amazon.com/cloudfront/home?region=us-east-2#create-
distribution

1. Select one of the S3 buckets we are using for the CDN.
2. For the origin path we will leave it empty so we can use the root folder of the S3 bucket.
3. Select the HTTP > HTTPS redirect as a precatution to prevent accidental use of assets on

HTTP
4. For alternative domain names add the domain name we will be using for the CDN. This will

be added to route53 as a CNAME record.
5. Select the ssl certificate (this is one we upload ourselves)
6. Click the Create Distribution button. It takes several minutes for a distribution to generate

but that is ok as we have work to do now with route53.
7. Click on the new distribution to get the url . You can not look for the new domain name for

the distribution. It will look something like: dr8thfc1fd2g.cloudfront.net
8. copy the domain and head over to Route53 –

https://console.aws.amazon.com/route53/home?region=us-east-2
9. Add the CNAME record linking pdlampdemo.com to the cloudfront distribution domain

(e.g. dr8thfc1fd2g.cloudfront.net)
10. That’s it.

Select one of the S3 buckets we are using for the CDN. For the origin path we will leave it empty so
we can use the root folder of the S3 bucket. Set a HTTP > HTTPS redirect as a precatution to
prevent accidental use of assets on HTTP.

For alternative domain names add the domain name we will be using for the CDN. This will be
added to route53 as a CNAME record. Select the ssl certificate (this is one we uploaded ourselves
earlier).

Click on the new distribution to get the url . You can not look for the new domain name for the
distribution. It will look something like: dr8thfc1fd2g.cloudfront.net.

https://console.aws.amazon.com/cloudfront/home
https://docs.impressto.ca/aws-setup-ssl-certificates.html
https://console.aws.amazon.com/cloudfront/home
https://console.aws.amazon.com/cloudfront/home?region=us-east-2#create-distribution:
https://console.aws.amazon.com/cloudfront/home?region=us-east-2#create-distribution:
https://console.aws.amazon.com/cloudfront/home
https://console.aws.amazon.com/route53/home?region=us-east-2#resource-record-sets:Z34JVZ4MBJ5FQW

Copy the domain and head over to Route53 –
https://console.aws.amazon.com/route53/home?region=us-east-2#resource-record-
sets:Z34JVZ4MBJ5FQW

Add the CNAME record linking pslampdemo.com to the cloudfront distribution domain (e.g.
dr8thfc1fd2g.cloudfront.net). After saving that you will be able to access the S3 assets with the
CDN domain.

Enabling CORS for CDN
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/add-cors-configuration.html

https://aws.amazon.com/premiumsupport/knowledge-center/no-access-control-allow-
origin-error/

You will needed to enable CORS for the s3 bucket. Navigate to the S3 bucket on AWS and click the
Cors Configuration button.

Add the following XML and save

Enable Header Whitelisting in the Cloudfront Distribution
To forward the headers from your CloudFront distribution, follow these steps:

1. Open your distribution from the CloudFront console.
2. Choose the Behaviors tab.
3. Choose Create Behavior, or choose an existing behavior, and then choose Edit.

1. For Cache Based on Selected Request Headers, choose Whitelist.
2. Under Whitelist Headers, choose headers from the menu on the left, and then choose

 Add.

Access-Control-Request-Headers
Access-Control-Request-Method
Origin

<?xml version="1.0" encoding="UTF-8"?>
<CORSConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
<CORSRule>
 <AllowedOrigin>*</AllowedOrigin>
 <AllowedMethod>GET</AllowedMethod>
</CORSRule>
</CORSConfiguration>

https://console.aws.amazon.com/route53/home?region=us-east-2#resource-record-sets:Z34JVZ4MBJ5FQW
https://console.aws.amazon.com/route53/home?region=us-east-2#resource-record-sets:Z34JVZ4MBJ5FQW
https://console.aws.amazon.com/cloudfront/

Enable GZip Compression
By default gzip compression is off. To turn it on you will need to edit the behavoir setting for the
Cloudfront distribution.

1. Select the distribution and click the “Distribution Settings” button
2. Select the “Behaviors” tab then click the “Edit” button
3. Set the cache policy to “Managed-CacheOptimization”

Enabling Gzip Compresson

Open the cloudfront page then select the distribution.

Click the behavoir tag.

Select the behavior and click Edit

Set the Cache Policy to Managed-CachingOptimized and turn on Compress Object Automatically.

Invalidating Cloudfront Files
To clear the files from cache (ssl update of emergency fixes after a deployment) follow these steps:

1. Go to the cloudfront distribution page, select the distribution page.
2. Select the distribution for which you want to invalidate files.
3. Choose Distribution Settings.
4. Choose the Invalidations tab.
5. Choose Create Invalidation.
6. For the files that you want to invalidate, enter one invalidation path per line. For

information about specifying invalidation paths, see Specifying the Files to Invalidate.
7. Important

Specify file paths carefully. You can’t cancel an invalidation request after you start it.
8. Choose Invalidate.

How S3 paths become CDN paths
This s3 path

https://pslampdemo.s3.us-east-2.amazonaws.com/website/images/kitten.png

now works as:

https://dr8thfc1fd2g.cloudfront.net/website/images/broadcast-marketplace.png

https://console.aws.amazon.com/cloudfront/home?region=us-east-1#distributions:
https://console.aws.amazon.com/cloudfront/home

which in turn with a cname record in route53 becomes:

https://pslampdemo.com/website/images/broadcast-marketplace.png

Additional info:

https://console.aws.amazon.com/cloudfront/home?region=us-east-2#create-
distribution:

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/resource-record-sets-
values-alias.html#rrsets-values-alias-alias-target

https://aws.amazon.com/blogs/aws/new-gzip-compression-support-for-amazon-
cloudfront/

Using CDN for WordPress
We use the wp-offload plugin to host wordpress media files on S3. This allows us to upload images
to a standard folder which is then accesible via CDN.

Make sure to read the instruction and set your CDN url accordingly.

https://deliciousbrains.com/wp-offload-media/

Connect to S3 from your local Ubuntu file
system
For Mac and Linux you can connect to s3 buckets from your local file navigator using s3fs

https://cloud.netapp.com/blog/amazon-s3-as-a-file-system

Here are the commands you need for Ubuntu. Replace BUCKETNAME with the name of your S3
bucket.

you can then navigate the s3 drive as a local drive

cd ~/;

for Debian (Ubuntu)
sudo apt-get install s3fs;

for mac use Brew install s3fs

echo ACCESS_KEY:SECRET_KEY > ~/.passwd-s3fs;
confirm entry was added
cat ~/.passwd-s3fs;
chmod 600 .passwd-s3fs;
mkdir ~/BUCKETNAME-s3-drive;
s3fs BUCKETNAME ~/BUCKETNAME-s3-drive;

https://cloud.netapp.com/blog/amazon-s3-as-a-file-system

Protecting wp-admin from bots
The most common attack on a wordpress site it the login page. Weak or compromised passwords
are used by automated bots that will hit thousands of sites a day trying multiple
username/password combinations.

In this article I will show you how to use .htaccess with nginx on Unbunt (or any Debian system) to
prevent bots from accessing your WordPress login url.

First of all install apache2-utils:

Create a .htpassed file

Edit your /etc/nginx/sites-available/vhost file to add:

Full example of my own file :

sudo apt-get update -y;
sudo apt-get install -y apache2-utils;

 sudo htpasswd -c /var/www/.htpasswd mysiteadminusernameamajigger

	location /wp-login.php {
 	 auth_basic "Administrators Area";
	 auth_basic_user_file /var/www/.htpasswd;
	}

	location /wp-admin {
 	 auth_basic "Administrators Area";
	 auth_basic_user_file /var/www/.htpasswd;
	}

server {

 root /var/www/impressto.net;
 index index.php index.html index.nginx-debian.html;
 server_name impressto.net www.impressto.net;

 location / {

Now test your config:

If no errors shown restart nginx

Now it you go to your wp-admin url you will get a blocking password prompy. This will block most
automated bots.

 root /var/www/impressto.net;
 if (!-e $request_filename) {
 rewrite ^/(.*)$ /index.php?q=$1 last;
 }
 }

 location ~ \.php$ {
 include snippets/fastcgi-php.conf;
 fastcgi_pass unix:/run/php/php7.4-fpm.sock;
 }

 location /wp-login.php {
 auth_basic "Administrators Area";
 auth_basic_user_file /var/www/.htpasswd;
 }

 location /wp-admin {
 auth_basic "Administrators Area";
 auth_basic_user_file /var/www/.htpasswd;
 }

}

sudo nginx -t;

sudo systemctl restart nginx;

Skip Password Prompts for Sudo commands
When administrating a development machine or server you may find yourself needlessly entering
sudo password. On a production machine this is something you’d want but for a local or
develpment machine not so much.

Here’s how you can bypass the password:

Open the /etc/sudoers file (as root , of course!) by running:

Note you should never edit /etc/sudoers with a regular text editor, such as Vim or nano, because
they do not validate the syntax like the visudo editor.

At the end of the /etc/sudoers file add this line replacing username with your actual username:

Save the file and exit with <ESC>wq . If you have any sort of syntax problem, visudo will warn you
and you can abort the change or open the file for editing again.It is important to add this line at
the end of the file, so that the other permissions do not override this directive, since they are
processed in order.

Note that for mac the save steps are a little different because mac uses vim for visudo edits. Press
the Escape key. Then, type :wq and press enter. This saves the file and quits vim.

Finally, open a new terminal window and run a command that requires root privileges, such as
sudo apt-get update . You should not be prompted for your password!

sudo visudo

username ALL=(ALL) NOPASSWD:ALL

http://www.vim.org/
http://www.nano-editor.org/
https://www.sudo.ws/man/visudo.man.html

Fix Localhost Binding for Safari
Safari does not automatically bind *.localhost domains to 127.0.0.1. To use Safari for local
development and especially when using docker with SSL you will need to add the entries to your
/etc/hosts file. Here is an example:

sudo nano /etc/hosts

add the following entries
127.0.0.1 mysite.localhost
127.0.0.1 somesubdomain.mysite.localhost

Create an SSH Key for Git
SSH keys are not just for Git but if you want to use SSH cloning for git, yeah you need em.

To create a new SSH key pair do the following:

1.) Open a terminal on Linux or macOS, or Git Bash / WSL on Windows.

2.) Generate a new ED25519 SSH key pair:

3.) Use the defaults for all options if you like. Doesn’t matter.

Copying SSH Key to Gitlab
Go into the ~/.ssh folder. On Mac you may need to do the following to see the .ssh folder:

On Linux:

Once you can see the hidden files you should see a file named id_rsa.pub or something like that. It
ends with .pub. Open that file with a text editor and you will see the SSH key you need to copy to
your own gitlab account.

Using a Access Token (works too but yuk!)
If you are not using an SSH connection you may need to create a personal access token (image
below). Make sure you save the token on your local machine as you will not be able to retreive it
once you close the page where you created it on Gitlab.

ssh-keygen -t rsa -b 2048 -C "username@mysite.com"
or ssh-keygen -t ed25519 -C "username@mysite.com"

open the finder dialog
Command+Shift+G
enter ~/.ssh

view hidden files
Command+Shift+.

cd ~/.ssh

on your keyboard hit Ctrl +h

To clone a repo using an access token, it is similar to cloning with https but the url is slightly
different. If your token is for example xSx81KqnADs-mZ4JviHa, the cloning command will be

If you were previously using https with a username and password, you will need to update the
remote url on your local machine. Once you have created the access token you will need to change
the remote origin of your local repo to add the access token. Here is an example of the old remote
url and a new one

To set the remote url use the following command as an example:

git clone https://oauth2:xSx81KqnADs-mZ4JviHa@gitlab.com/myaccount/myrep.git

old url
https://somegitsite.com/mycompany/mysite.git

new url with access token
https://oauth2:uggU-s2usayJtiqguEAQ@somegitsite.com/mycompany/mysite.git

git remote set-url origin https://oauth2:AmDAyXHEVxyEBf3fbg@somegitsite.com/mycompany/mysite.git

Install Mkcert for SSL on Localhost
Mkcertt is a simple tool for making locally-trusted development certificates. It requires no
configuration.

https://github.com/FiloSottile/mkcert

To install on Debian (Ubuntu) use the following commands:

Install LinuxBrew – get the installer

Enable it

Install mkcert

If at this point you are getting a mkcert command not found , or Warning: /home/linuxbrew/.linuxbrew/bin is
not in your PATH. you many need to fix the global PATH var to include the mkcert bin folder. Edit
your ~/$HOME/.profile file and add the following :

Save the .profile file and from the terminal run source ~/.profile

An alternative way to install Mkcert is the following (not fully tested by me):

sudo apt install libnss3-tools

/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install.sh)"

test -d ~/.linuxbrew && eval $(~/.linuxbrew/bin/brew shellenv)
test -d /home/linuxbrew/.linuxbrew && eval $(/home/linuxbrew/.linuxbrew/bin/brew shellenv)
test -r ~/.bash_profile && echo "eval \$($(brew --prefix)/bin/brew shellenv)" >>~/.bash_profile
echo "eval \$($(brew --prefix)/bin/brew shellenv)" >>~/.profile

brew install mkcert;
mkcert -install;

if [-d "/home/linuxbrew/.linuxbrew/bin"] ; then
 PATH="/home/linuxbrew/.linuxbrew/bin:$PATH"
fi

sudo apt-get update
sudo apt install wget libnss3-tools

https://github.com/FiloSottile/mkcert
https://docs.brew.sh/Homebrew-on-Linux
https://brew.sh/

set MCVER="v.1.4.1"
wget -O mkcert https://github.com/FiloSottile/mkcert/releases/download/${MCVER}/mkcert-${MCVER}-linux-
amd64
chmod +x mkcert
sudo mv mkcert/user/local/bin

Apache Tricks
Set Server Agent Name

Once the module is installed, you can modify the Apache config under the file
/etc/apache2/apache2.conf . Add this line around the end of the file.

How to set the Expires Headers in Apache
enable expires and headers modules for Apache

Edit the /etc/apache2/apache2.conf file

Add the following

sudo apt-get install libapache2-mod-security2

<IfModule mod_security2.c>
SecServerSignature "ecoware"
</IfModule>

sudo a2enmod expires;
sudo a2enmod headers;

sudo nano /etc/apache2/apache2.conf

<IfModule mod_expires.c>
ExpiresActive on
AddType image/x-icon .ico
ExpiresDefault "access plus 2 hours"
ExpiresByType text/html "access plus 7 days"
ExpiresByType image/gif "access plus 7 days"
ExpiresByType image/jpg "access plus 7 days"
ExpiresByType image/jpeg "access plus 7 days"
ExpiresByType image/png "access plus 7 days"
ExpiresByType text/js "access plus 2 hours"
ExpiresByType text/javascript "access plus 2 hours"
ExpiresByType text/plain "access plus 2 hours"
ExpiresByType image/x-icon "access plus 30 days"

Restart apache

Check that it worked by loading an image. You should see an expired line in the output such as

See: https://hooshmand.net/fix-set-expires-headers-apache/

ExpiresByType image/ico "access plus 30 days"
</IfModule>

sudo service apache2 restart

Expires: Wed, 22 Aug 2020 22:03:35 GMT

https://hooshmand.net/fix-set-expires-headers-apache/

NodeJS Proxy via Apache
Here is how to serve nodejs entry points by using an Apache proxy. This hides the port number and
the nodeJs entry points simply appear as part of the “monolithic” application.

WINDOWS:

Setup is easy:

2.) Open your proxy config file C:\xampp\apache\conf\extra\httpd-proxy.conf . Edit it to match the
following:

3.) Open your vhosts file C:\xampp\apache\conf\extra\httpd-vhosts.conf . Add the following:

Include "conf/extra/httpd-proxy.conf"
LoadModule proxy_module modules/mod_proxy.so
LoadModule proxy_connect_module modules/mod_proxy_connect.so
LoadModule proxy_http_module modules/mod_proxy_http.so

<IfModule proxy_module>
 <IfModule proxy_http_module>
 ProxyRequests On
 ProxyVia On

 <Proxy *>
 Order deny,allow
 Allow from all
 </Proxy>

 ProxyPass /node http://127.0.0.1:3000/
 ProxyPassReverse /node http://127.0.0.1:3000/
 </IfModule>
</IfModule>

 <VirtualHost *:*>
 ProxyPreserveHost On
 ProxyPass "/node" "http://127.0.0.1:3000/"
 ProxyPassReverse "/node" "http://127.0.0.1:3000/"
 ServerName api.impressto.net
</VirtualHost>

4.) Restart Apache.

from command terminal run:

2.) Open vhosts file /etc/ apache2/sites-available/api.impressto.net.conf . Add the following:

..

sudo a2enmod proxy
sudo a2enmod proxy_http
sudo a2enmod proxy_balancer
sudo a2enmod lbmethod_byrequest
sudo service apache2 restart

<VirtualHost *:443>
 ServerAdmin admin@impressto.net
 ServerName impressto.localhost
 DocumentRoot /var/www/impressto.localhost/public

 ProxyPreserveHost On
 ProxyPass / http://127.0.0.1:8000/
 ProxyPassReverse / http://127.0.0.1:8000/

 ErrorLog ${APACHE_LOG_DIR}/error.log
 CustomLog ${APACHE_LOG_DIR}/access.log combined
 SSLEngine on
 SSLCertificateFile /etc/apache2/ssl/apache.crt
 SSLCertificateKeyFile /etc/apache2/ssl/apache.key

 <Directory /var/www/impressto.localhost/public>
 Options Indexes FollowSymLinks MultiViews
 AllowOverride All
 Require all granted
 </Directory>

</VirtualHost>

SQL simplified

https://docs.impressto.ca/uploads/images/gallery/2024-11/464839105-2251428365242267-4073966686533682812-n.jpg

Localstack notes
To simulate SQS, it internally uses ElasticMQ

You can start LocalStack via Docker, for example, and it will start the following services:

API Gateway at http://localhost:4567
Kinesis at http://localhost:4568
DynamoDB at http://localhost:4569
DynamoDB Streams at http://localhost:4570
Elasticsearch at http://localhost:4571
S3 at http://localhost:4572
Firehose at http://localhost:4573
Lambda at http://localhost:4574
SNS (simple notification service) at http://localhost:4575
SQS at http://localhost:4576
Redshift at http://localhost:4577
ES (Elasticsearch Service) at http://localhost:4578
SES (email) at http://localhost:4579
Route53 at http://localhost:4580
CloudFormation at http://localhost:4581
CloudWatch at http://localhost:4582
SSM (system manager) at http://localhost:4583

http://localhost:4567/
http://localhost:4568/
http://localhost:4569/
http://localhost:4570/
http://localhost:4571/
http://localhost:4572/
http://localhost:4573/
http://localhost:4574/
http://localhost:4575/
http://localhost:4576/
http://localhost:4577/
http://localhost:4578/
http://localhost:4579/
http://localhost:4580/
http://localhost:4581/
http://localhost:4582/
http://localhost:4583/

