Home Power Consumption Monitoring
For this project the goal is to know exactly how much current is being used for the entire property. To collect this data I placed 2 SCT013 non-invasive split core current transformers around the phase 1 and 2 wires in the main electrical panel. Using some simple math this can convert the small voltage in the transformers into an accurate current reading.
Components (total cost $20 CAD):
- ESP32 WROOM ($5 CAD) - https://www.aliexpress.com/item/4000471022528.html
- 2 x SCT013 split core transducers ($8 CAD) - https://www.aliexpress.com/item/1005006318596840.html
- 16 Bit I2C ADS1115 Module ($3 CAD) - https://www.aliexpress.com/item/32817162654.html
- OLED SSD1306 ($1.50 CAD) - https://www.aliexpress.com/item/32643950109.html
- 3d printer filament ($1 CAD)
Wiring Diagram:
A clamp meter was used to confirm the calculated values were valid for a wide range of current (1 amp up to 60)
Relay unit mounted on the wall:
And the code to make it all happen:
#include <SPI.h>
#include <WiFi.h>
#include <HTTPClient.h>
#include <Wire.h>
#include <Adafruit_GFX.h>
#include <Adafruit_SSD1306.h>
#include <Adafruit_ADS1X15.h>
#include <EEPROM.h>
#include "splashscreenbitmap.h" // just make it look fun on bootup
int activeConnection = 1;
// network 1
const String ssid1 = "xxx";
const String password1 = "xxxxxxx";
// network 2
const String ssid2 = "xxx";
const String password2 = "xxxxx";
const String heartbeatUrl = "https://xxx.xxx.com/silopower/heartbeat.php";
const String currentUrl = "https://xxx.xxx.com/silopower/set_hydro_current.php?data=";
#define EEPROM_SIZE 4
int eepromPingsAddress = 0;
float totalServerPings = 0;
int eepromFailedPingsAddress = 1;
float totalServerPingFails = 0;
int eepromActiveConnection = 1;
#define SCREEN_WIDTH 128 // OLED display width, in pixels
#define SCREEN_HEIGHT 64 // OLED display height, in pixels
#define LOGO_HEIGHT 128
#define LOGO_WIDTH 64
// Declaration for an SSD1306 display connected to I2C (SDA, SCL pins)
#define OLED_RESET - 1 // Reset pin # (or -1 if sharing Arduino reset pin)
Adafruit_SSD1306 display(SCREEN_WIDTH, SCREEN_HEIGHT, & Wire, OLED_RESET);
Adafruit_ADS1115 ads;
long secondsOfHour = 0;
const int pulseRate = 1000; // loop runs once per second
const int serverSendInterval = 10; // 10 minutes between sending a pressure update to the server
const int samplesPerReading = 12 * serverSendInterval; // reading current takes 5 seconds so 60 / 5 = 12
int loopCount = 0;
String payload = "";
int httpCode = 0;
bool wifiConnected = false;
bool wifiPaused = false;
int wifiPausedTick = 0;
bool wifiSleeping = false;
bool debug = false; // when true server does not update
bool serverFailed = false;
int wifiConnectionAttempts = 0;
float basePressureVoltage = 0.46;
float totalledAveragePressure = 0;
float averagePressure = 0;
const float FACTOR = 9;
const int secondsPerHour = 3600; // set to 60 for debugging
HTTPClient http;
void setup() {
Serial.begin(115200);
if (!display.begin(SSD1306_SWITCHCAPVCC, 0x3C)) {
Serial.println(F("SSD1306 allocation failed"));
for (;;); // Don't proceed, loop forever
}
if (!ads.begin()) {
Serial.println("Failed to initialize ADS.");
while (1);
}
// ads.setGain(GAIN_FOUR);
display.clearDisplay();
display.drawBitmap(0, 0, epd_bitmap_annie, 128, 64, 1);
display.display();
delay(3000);
EEPROM.begin(EEPROM_SIZE);
activeConnection = EEPROM.read(eepromActiveConnection);
Serial.print("eepromActiveConnection :");
Serial.println(activeConnection);
if (isnan(activeConnection)) {
activeConnection = 1;
}
if (activeConnection == 0) {
activeConnection = 1;
}
if (activeConnection > 2) {
activeConnection = 2;
}
Serial.print("activeConnection: ");
Serial.println(activeConnection);
float pingData = EEPROM.readFloat(eepromPingsAddress);
if (isnan(pingData)) {
pingData = 0;
}
totalServerPings = pingData;
EEPROM.end();
EEPROM.begin(EEPROM_SIZE);
float pingFailData = EEPROM.readFloat(eepromFailedPingsAddress);
if (isnan(pingFailData)) {
pingFailData = 0;
}
totalServerPingFails = pingFailData;
EEPROM.end();
if (!connectToWiFi()) {
delay(2000);
WiFi.disconnect();
delay(1000);
if (activeConnection == 1) {
activeConnection = 2;
} else {
activeConnection = 1;
}
connectToWiFi();
}
delay(2000); // Pause for 2 seconds
}
void loop() {
secondsOfHour++;
// after 24 hours reset this integer
if (secondsOfHour > 86400) {
secondsOfHour = 1;
ESP.restart();
}
float amps = getAmps();
float watts = amps * 120;
display.clearDisplay();
display.setTextSize(2);
display.setTextColor(WHITE);
display.setCursor(0, 0);
display.print("W:");
display.println(watts, 0);
display.print("A:");
display.println(amps, 0);
display.setTextSize(1);
display.println("internet:");
display.println(wl_status_to_string(WiFi.status()));
display.display();
/////////////////////
// SERVER RELAY
if (!debug && (loopCount >= samplesPerReading) || serverFailed) {
loopCount = 0;
totalledAveragePressure = 0;
setWifiSleepMode(false);
delay(2000);
// do a heartbeat check to see if we are online...
http.begin(heartbeatUrl);
httpCode = http.GET();
if (!httpCode > 0) {
// wifi may not be alive yet so wait 3 seconds
delay(3000);
}
String recordedWatts = String(watts, 1);
recordedWatts.trim();
loopCount = 0;
http.begin(currentUrl + recordedWatts);
httpCode = http.GET();
if (httpCode > 0) {
payload = http.getString();
Serial.println("HTTP Response: " + payload);
recordPingSucces();
} else {
recordPingFailure();
}
http.end();
setWifiSleepMode(true);
}
loopCount++;
}
bool connectToWiFi() {
String activeSsid = "";
String activePassword = "";
if (activeConnection == 1) {
activeSsid = ssid1;
activePassword = password1;
} else if (activeConnection == 2) {
activeSsid = ssid2;
activePassword = password2;
}
Serial.print("Connecting to WiFi: ");
Serial.println(activeSsid);
WiFi.begin(activeSsid, activePassword);
while (WiFi.status() != WL_CONNECTED && wifiConnectionAttempts < 20) {
delay(500);
Serial.print(".");
wifiConnectionAttempts++;
}
wifiConnectionAttempts = 0;
if (WiFi.status() == WL_CONNECTED) {
Serial.println("\nConnected to WiFi");
Serial.print("IP Address: ");
Serial.println(WiFi.localIP());
wifiConnected = true;
EEPROM.begin(EEPROM_SIZE);
EEPROM.write(eepromActiveConnection, activeConnection);
EEPROM.commit();
EEPROM.end();
Serial.print("set activeConnection to : ");
Serial.println(activeConnection);
return true;
} else {
Serial.print("Connection to ");
Serial.print(activeSsid);
Serial.println(" failed. Trying alternative");
return false;
}
}
/**
* set wifi sleep mode between data relays to conserve energy
* @param sleepMode - if true set wifi card to sleep to conserve energy
*/
void setWifiSleepMode(bool sleepMode) {
wifiSleeping = sleepMode;
if (sleepMode) {
WiFi.disconnect();
WiFi.setSleep(true);
delay(1000);
Serial.print("sleep wifi status: ");
Serial.println(wl_status_to_string(WiFi.status()));
} else {
WiFi.setSleep(false);
WiFi.reconnect();
delay(1000);
Serial.print("awaken wifi status: ");
Serial.println(wl_status_to_string(WiFi.status()));
// Check if the connection is still active. if not trigger wait for it to come back online
if (WiFi.status() != WL_CONNECTED && !wifiPaused) {
Serial.println("Connection lost. Attempting to reconnect in 1 minute ...");
WiFi.disconnect();
wifiPaused = true;
wifiConnected = false;
connectToWiFi();
}
}
}
/**
* record server ping success in long term memory
*/
void recordPingSucces() {
totalServerPings++;
EEPROM.begin(EEPROM_SIZE);
EEPROM.writeFloat(eepromPingsAddress, totalServerPings);
EEPROM.commit();
EEPROM.end();
wifiConnected = true;
serverFailed = false;
}
/**
* record server ping fails in long term memory
*/
void recordPingFailure() {
totalServerPingFails++;
EEPROM.begin(EEPROM_SIZE);
EEPROM.writeFloat(eepromFailedPingsAddress, totalServerPingFails);
EEPROM.commit();
EEPROM.end();
wifiConnected = false;
serverFailed = true;
}
/**
* ESP32 wifi card statuses
* @param status
* @return string
*/
String wl_status_to_string(wl_status_t status) {
String response = "";
switch (status) {
case WL_NO_SHIELD:
response = "WL_NO_SHIELD";
break;
case WL_IDLE_STATUS:
response = "WL_IDLE_STATUS";
break;
case WL_NO_SSID_AVAIL:
response = "WL_NO_SSID_AVAIL";
break;
case WL_SCAN_COMPLETED:
response = "WL_SCAN_COMPLETED";
break;
case WL_CONNECTED:
response = "WL_CONNECTED";
break;
case WL_CONNECT_FAILED:
response = "WL_CONNECT_FAILED";
break;
case WL_CONNECTION_LOST:
response = "WL_CONNECTION_LOST";
break;
case WL_DISCONNECTED:
response = "WL_DISCONNECTED";
break;
}
return response;
}
/**
* Get the current in amps coming from the hall sensor
* @return float
*/
float getAmps() {
float sensor1Reading;
float sensor2Reading;
float amps1 = 0;
float amps2 = 0;
float combinedReading;
float sum = 0;
long time_check = millis();
int counter = 0;
while (millis() - time_check < 5000) {
sensor1Reading = ads.readADC_Differential_0_1();
sensor2Reading = ads.readADC_Differential_2_3();
// ac current flows in 2 directions so grab the flow in each direction
if(sensor1Reading < 0) {
sensor1Reading = sensor1Reading * -1;
}
if(sensor2Reading < 0) {
sensor2Reading = sensor2Reading * -1;
}
if(sensor1Reading < 2) {
sensor1Reading = 0;
}
if(sensor2Reading < 2) {
sensor2Reading = 0;
}
amps1 += sensor1Reading;
amps2 += sensor2Reading;
combinedReading = amps1 + amps2;
counter = counter + 1;
}
float reading = (combinedReading / counter);
float averageAmps1 = (amps1 / counter);
float averageAmps2 = (amps2 / counter);
// some adjustments for variations in readings
float divider = .155;
averageAmps1 = averageAmps1 * divider + (averageAmps1 * 0.015);
averageAmps2 = averageAmps2 * divider + (averageAmps2 * 0.015);
return averageAmps1 + averageAmps2;
}